14,219 research outputs found

    Exact solutions to the time-dependent supersymmetric muliphoton Jaynes-Cummings model and the Chiao-Wu model

    Full text link
    By using both the Lewis-Riesenfeld invariant theory and the invariant-related unitary transformation formulation, the present paper obtains the exact solutions to the time-dependent supersymmetric two-level multiphoton Jaynes-Cummings model and the Chiao-Wu model that describes the propagation of a photon inside the optical fiber. On the basis of the fact that the two-level multiphoton Jaynes-Cummings model possesses the supersymmetric structure, an invariant is constructed in terms of the supersymmetric generators by working in the sub-Hilbert-space corresponding to a particular eigenvalue of the conserved supersymmetric generators (i.e., the time-independent invariant). By constructing the effective Hamiltonian that describes the interaction of the photon with the medium of the optical fiber, it is further verified that the particular solution to the Schr\"{o}dinger equation is the eigenfunction of the second-quantized momentum operator of photons field. This, therefore, means that the explicit expression (rather than the hidden form that involves the chronological product) for the time-evolution operator of wave function is obtained by means of the invariant theories.Comment: 14 pages, Latex. This is a revised version of the published paper: Shen J Q, Zhu H Y 2003 Ann. Phys.(Leipzig) Vol.12 p.131-14

    Entanglement entropy and entanglement spectrum of the Kitaev model

    Full text link
    In this paper, we obtain an exact formula for the entanglement entropy of the ground state and all excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple separable form S=S_G+S_F, with S_F the entanglement entropy of a free Majorana fermion system and S_G that of a Z_2 gauge field. The Z_2 gauge field part contributes to the universal "topological entanglement entropy" of the ground state while the fermion part is responsible for the non-local entanglement carried by the Z_2 vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we propose a new quantity to characterize topologically ordered states--the capacity of entanglement, which can distinguish the states with and without topologically protected gapless entanglement spectrum.Comment: 4.0 pages + supplementary material, published version in Phys. Rev. Let
    corecore